ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Y. Ikeda, C. Konno, H. Maekawa
Nuclear Science and Engineering | Volume 116 | Number 1 | January 1994 | Pages 19-27
Technical Paper | doi.org/10.13182/NSE94-A21477
Articles are hosted by Taylor and Francis Online.
In view of the importance of so-called “sequential reactions”in fusion reactor structural materials, the production of radioactivity due to sequential reactions associated with protons emitted via (n,xp) reactions with 14.9-MeV neutrons has been measured. The effective production yields with respect to 14.9-MeV incident neutrons produced by sequential reactions were obtained for the radio active products of 48 V, 56Co, and 64Zn in titanium, iron, and copper, respectively. The values were 14.7 ± 1.9, 4.6 ±0.3, and 11.4 ± 1.9 μb, respectively. The effective production cross section was estimated on the basis of all relevant data on (n,xp) and (p,n) cross sections, proton emission spectra, and the proton stopping power in these materials. This analysis gave values 22% larger, 29% smaller, and a factor of 5.6 smaller than the measured values for these reactions, respectively. The range of these discrepancies is not unreasonable considering the large uncertainties in the data base used in the estimation.