ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
M. Salvatores, I. Slessarev, M. Uematsu
Nuclear Science and Engineering | Volume 116 | Number 1 | January 1994 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE94-A21476
Articles are hosted by Taylor and Francis Online.
A new physics approach is presented to evaluate the theoretical transmutation potential of different nuclear power systems (standard or advanced fission reactors and hybrid accelerator/sub-critical blankets). The nuclei to be transmuted are the transuranium (or transplutonium) isotopes produced in the irradiation of naturally occurring fuels (uranium or thorium) and the fission product isotopes. The analysis is based on an evaluation of neutronic constraints on the transmutation rates integrated over the life of the nuclide families, taking into account the overall neutron balance of the system being considered. This method allows a comparison of the potential of different systems and establishes physics limitations, particularly in the field of fission product transmutation.