ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Satishchandra Arya, M. Keyhani
Nuclear Science and Engineering | Volume 105 | Number 4 | August 1990 | Pages 391-403
Technical Paper | doi.org/10.13182/NSE90-A21473
Articles are hosted by Taylor and Francis Online.
An experimental study of natural convection heat transfer in a one-twelfth scaled model of a sealed storage cask of the Integral Monitored Retrievable Storage facility containing 12 canisters is performed. A uniform power dissipation per unit length is supplied to each canister (heater rod), and the cask (outer cylinder) is maintained at a constant temperature. Correlations representing the convective Nusselt number as a function of the Rayleigh number for each rod as well as one for the rod bundle as a whole are reported. Two outer cylinders in a vertical position with exactly the same dimensions, one with internal fins and the other without the fins, are used in these experiments. Comparisons of the heat transfer data obtained for these cylinders show that the conduction regime terminates at a much lower Rayleigh number in the case of the cylinder without internal fins. Moreover, the critical Rayleigh number (onset of convection) obtained for this case is in good agreement with the one predicted by a general correlation for square array rod bundles as reported previously. A significant result of the present study is that, once the rod bundles reach their respective convective flow regime, the heat transfer can be predicted with a single correlation. Using a recommended length scale, the correlation predicts the convective Nusselt number for all the available rod bundle data (present and previously reported results) with an average deviation of 7.2%.