ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
J. M. Martínez-Val, M. Piera, Y. Ronen
Nuclear Science and Engineering | Volume 105 | Number 4 | August 1990 | Pages 349-370
Technical Paper | doi.org/10.13182/NSE90-A21470
Articles are hosted by Taylor and Francis Online.
The discretized diffusion equation is structured in a formalism embodying in the left side all the terms involving the group fluxes at the generic point under calculation, and in the right side containing all the terms involving the fluxes at neighbor points. This formalism is especially suited for vectorial computation and also presents very good computing performance in scalar computers. The computing methodology includes an acceleration technique, “coarse-mesh precalculation,” to minimize computing times, particularly for cases with very large numbers of points. The algorithm is stable and positive, and it is improved by a discretization of the Laplacian operator using five points in each coordinate.