ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
W. Breitung, S. A. Wright
Nuclear Science and Engineering | Volume 105 | Number 4 | August 1990 | Pages 303-318
Technical Paper | doi.org/10.13182/NSE90-A21467
Articles are hosted by Taylor and Francis Online.
Irradiated (U.Pu)-mixed oxide with 5% burnup was heated in the pulsed Annular Core Research Reactor at Sandia National Laboratories. The tests were typical of prompt Bethe-Tait excursions in terms of heating method (nuclear fission), heating period (milliseconds), and temperatures attained (up to 7700 K). Fission products provided high pressures at temperatures at which fresh fuel shows only a negligible vapor pressure. Fission product release became measurable as soon as the temperature exceeded the steady-state irradiation temperature of the fuel sample. The fission product pressures reached 1.3 to 2.5 MPa at 3000 K over solid fuel, and 2.5 to 5 MPa at 4000 K over liquid fuel. The total amount of fission product released corresponded to ∼30 to 75% of the fission gas inventory. The amount of fission product released increased with the fuel heating rate. Under rapid heating, the total pressure over irradiated (U,Pu) oxide is controlled by a suppression mechanism. At any given temperature, the gaseous components (xenon, cesium, and ambient gas) suppress fuel boiling if their pressure pgas is higher than the fresh fuel saturation vapor pressure psat of unirradiated fuel. If psat exceeds pgas, the total pressure is, to a first approximation, equal to Psat. Under millisecond heating, the total pressure from irradiated fuel may be taken as ptot = max(Pgas,Psat).