ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
W. Breitung, S. A. Wright
Nuclear Science and Engineering | Volume 105 | Number 4 | August 1990 | Pages 303-318
Technical Paper | doi.org/10.13182/NSE90-A21467
Articles are hosted by Taylor and Francis Online.
Irradiated (U.Pu)-mixed oxide with 5% burnup was heated in the pulsed Annular Core Research Reactor at Sandia National Laboratories. The tests were typical of prompt Bethe-Tait excursions in terms of heating method (nuclear fission), heating period (milliseconds), and temperatures attained (up to 7700 K). Fission products provided high pressures at temperatures at which fresh fuel shows only a negligible vapor pressure. Fission product release became measurable as soon as the temperature exceeded the steady-state irradiation temperature of the fuel sample. The fission product pressures reached 1.3 to 2.5 MPa at 3000 K over solid fuel, and 2.5 to 5 MPa at 4000 K over liquid fuel. The total amount of fission product released corresponded to ∼30 to 75% of the fission gas inventory. The amount of fission product released increased with the fuel heating rate. Under rapid heating, the total pressure over irradiated (U,Pu) oxide is controlled by a suppression mechanism. At any given temperature, the gaseous components (xenon, cesium, and ambient gas) suppress fuel boiling if their pressure pgas is higher than the fresh fuel saturation vapor pressure psat of unirradiated fuel. If psat exceeds pgas, the total pressure is, to a first approximation, equal to Psat. Under millisecond heating, the total pressure from irradiated fuel may be taken as ptot = max(Pgas,Psat).