ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Masahiro Kinoshita, Yuji Naruse
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 469-475
Technical Note | doi.org/10.13182/NSE82-A21461
Articles are hosted by Taylor and Francis Online.
This Note reports remarkable improvements in the previously reported mathematical model for multi-component separating cascades, which are applicable to the cases where the interstage flows and the stage separation factors are input variables for the calculations. The number of the independent variables is greatly decreased for much more efficient iterative calculations by the multidimensional Newton-Raphson method. Particularly, if the stage separation factors are independent of concentrations of the up and down streams, the improved model presents great decreases both in the computation time needed at each iterative step and in the number of total iterations. Several numerical experiments made for a five-component system of N2-O2-41 Ar-85Kr-133Xe, which are separated by using the porous membrane method, indicate that the total computation time is shortened by almost two orders of magnitude if the improved model is used.