ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
D. G. Cacuci, E. Wacholder
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 461-468
Technical Note | doi.org/10.13182/NSE82-A21460
Articles are hosted by Taylor and Francis Online.
A rigorous formalism is presented for sensitivity analysis of functional-type responses associated with the well-posed system of quasi-linear partial differential equations (PDEs) of hyperbolic type that describe one-dimensional, two-phase flows. The rigor and generality of this formalism stem from the use of G differentials. In particular, it is possible to treat discontinuities and parameters that are functions rather than scalars. This formalism uses adjoint functions to determine efficiently sensitivities to many parameter variations. The adjoint system satisfied by these adjoint functions is explicitly determined and shown to be solvable as a well-posed system of linear first-order PDEs possessing the same characteristics as the original quasi-linear PDEs. For completeness, a general solution of this adjoint system is obtained by using the method of characteristics. The physical meaning of this sensitivity analysis formalism is illustrated by an application to the homogeneous equilibrium model for two-phase flow. Although this formalism does not address transition phenomena between single- and two-phase flow regimes and ignores higher order effects of parameter variations, it provides a complete theoretical framework for implementing an efficient sensitivity analysis capability into one-dimensional, two-phase flow models.