ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
S. Pelloni
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 458-461
Technical Note | doi.org/10.13182/NSE82-A21459
Articles are hosted by Taylor and Francis Online.
In this Note a new iterative method for solving the monoenergetic diffusion equation is presented. Experience has shown that the usual iterative methods used to solve the resulting equations either do not converge at all or the number of inner iterations becomes too large when a high-order approximation is used for the spatial flux. Our aim therefore has been to develop a new iterative method that leads to a small number of iterations even for a high order of spatial flux approximation. The present method is additionally expedited using Chebyshev or Wagner and Andrzejewski procedures, which are compared.The SAPHIR benchmark test case with a fixed volume source was used for calculations because it is difficult to converge. It is shown that the present method needs almost the same number of iterations for Lagrangian flux approximation of first to fourth order. This number is smaller than 53. The Chebyshev procedure, which was the most effective, halved the number of inner iterations.