ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
P. Barbucci, F. Di Pasquantonio
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 448-457
Technical Note | doi.org/10.13182/NSE82-A21458
Articles are hosted by Taylor and Francis Online.
An evaluation of the computational efficiency of some spatial discretization schemes has been carried out on a number of slab geometry problems of interest in the shielding field. The achievable accuracy for a given cost of the calculation was compared, taking into account that the actual cost depends on both the computing time and the storage required and using as an error measure the ratio to the “reference solution” for a global quantity like the dose rate or the fast flux. The examined cases include neutron calculations in water, concrete, and steel slabs and, in a pressurized water reactor system, the photon calculations in a lead slab. The main conclusion of the study is that, for a given cost, the exponential scheme supplies solutions more accurate than those of the linear characteristic scheme or, at least, of the same quality.