ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Michael Scott McKinley, Farzad Rahnema
Nuclear Science and Engineering | Volume 136 | Number 1 | September 2000 | Pages 15-33
Technical Paper | doi.org/10.13182/NSE00-A2145
Articles are hosted by Taylor and Francis Online.
A perturbation method is developed for estimating the change in the solution of a reactive system to any order for a perturbation in the boundary condition in diffusion theory. The method derived gives formalisms for the eigenvalue, normalized flux, and homogenized parameters. Five examples are provided to verify the method as well as analyze the errors associated with it. The first example is very simple and solves the state of the system up to eighth order and gives a simple numerical analysis of a large perturbation. The next example gives an analytical solution up to second order. A two-region example is also given, which is partially numerical and partially analytical. An albedo test example shows that the higher-order terms all appear to be present in the formalism. The final example presents a simplified one-dimensional boiling water reactor core analyzed up to third order numerically. Applications of this method, error propagation, and future work are also discussed.