ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Michael Scott McKinley, Farzad Rahnema
Nuclear Science and Engineering | Volume 136 | Number 1 | September 2000 | Pages 15-33
Technical Paper | doi.org/10.13182/NSE00-A2145
Articles are hosted by Taylor and Francis Online.
A perturbation method is developed for estimating the change in the solution of a reactive system to any order for a perturbation in the boundary condition in diffusion theory. The method derived gives formalisms for the eigenvalue, normalized flux, and homogenized parameters. Five examples are provided to verify the method as well as analyze the errors associated with it. The first example is very simple and solves the state of the system up to eighth order and gives a simple numerical analysis of a large perturbation. The next example gives an analytical solution up to second order. A two-region example is also given, which is partially numerical and partially analytical. An albedo test example shows that the higher-order terms all appear to be present in the formalism. The final example presents a simplified one-dimensional boiling water reactor core analyzed up to third order numerically. Applications of this method, error propagation, and future work are also discussed.