ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. J. Ades, K. L. Peddicord
Nuclear Science and Engineering | Volume 81 | Number 4 | August 1982 | Pages 563-569
Technical Note | doi.org/10.13182/NSE82-A21448
Articles are hosted by Taylor and Francis Online.
An analytical method is presented to estimate the effective thermal conductivity of sphere-pac fuel during restructuring. This method is based on a unit cell model in which a sintering model is used to describe the extent of restructuring occurring between the fuel particles. As a result of sintering, a “neck” is formed between the fuel spheres. The effective conductivity of the sphere-pac bed can then be evaluated in terms of restructuring, i.e., as a function of temperature and necking between the fuel spheres. The effects of other relevant parameters such as the gas pressure in the sphere-pac pin and fission gas release are also included in the model Furthermore, a thermal conductivity criterion is used to determine the matching conductivity boundary, which is defined as the outer radial boundary where fuel restructuring is completed. Fuel restructuring is of particular importance in sphere-pac fuel because of its controlling effect on the temperature distribution. By knowing the effective conductivity, the temperature distribution of the fuel, both in its initial configuration and during restructuring, can be determined. Using the model, the temperature distribution as well as the extent of restructuring can be calculated. This model can be incorporated into computer codes to predict the overall thermal and mechanical performance of sphere-pac fuel pins.