An expression for ion beam deposition rate, which also includes energy loss to collective modes of the target plasma, quantum mechanical value of the impact parameter, and close collision corrections to the Coulomb logarithm, has been used in numerical calculations of the ion beam-pellet interaction. A comparison of the results with those obtained using the unmodified stopping power expression is presented. It is found that the integrated effect of the modifications considered for the energy deposition is such as to decrease the penetration range during the entire ion beam-pellet interaction below that provided by the unmodified energy deposition approach; it leads to the enhancement of the heating rate and, consequently, to different thermonuclear yield ratios.