ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. Valko, P. V. Tsvetkov, J. E. Hoogenboom
Nuclear Science and Engineering | Volume 135 | Number 3 | July 2000 | Pages 304-307
Technical Note | doi.org/10.13182/NSE00-A2143
Articles are hosted by Taylor and Francis Online.
The double heterogeneity of the core of pebble bed-type high-temperature reactors (HTRs) requires special attention when lattice codes are applied to a unit cell of such systems. As the self-shielding of the resonance absorption takes place in the small fuel grains in the pebbles, the grain-lattice calculation should apply a Dancoff factor for the grain lattice yet take into account the finiteness of the grain lattice in a pebble and the possibility of a neutron reaching another pebble. In a study of HTR lattices, the Dancoff factor was calculated using the DANCOFF-MC program. For a finite lattice of fuel grains in the fuel region of a pebble, the space-dependent Dancoff factor was calculated, and it was averaged over the volume of the fuel in one pebble. This single-pebble Dancoff factor was further corrected to include the effect of other pebbles. The sensitivity of the Dancoff factor to core composition and the sensitivity of core calculations to the Dancoff factor are discussed, and a numerical example is given.