ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Mikdam Saleh, R. A. Danofsky, R. A. Hendrickson
Nuclear Science and Engineering | Volume 80 | Number 1 | January 1982 | Pages 179-184
Technical Note | doi.org/10.13182/NSE82-A21414
Articles are hosted by Taylor and Francis Online.
A number of investigators have discussed the use of two-detector cross power spectral density (CPSD) measurements to obtain the velocity of an axially propagating perturbation of the moderator density in a boiling water reactor. The basis of the measurements is the view that the detector response can be separated into local and global components where the local component, which is dominant for high frequencies (f > 2 Hz), makes possible the observation of the moving perturbation associated with steam flow in the reactor. For low frequencies, the response consists of a combination of the local and global components, and correlation with the perturbation velocity is not straightforward. In this Note, the asymptotic low and high frequency behavior of the CPSD is examined using the complex detector adjoint function formulation. It is shown that at low frequencies, where the wavelength of the perturbation is much larger than the axial core dimension, the phase of the CPSD and therefore the perturbation velocity correlates with the centroid spacing of detector functions involving the product of the detector adjoint function and the static flux. For high frequencies, on the other hand, the phase correlates with the detector spacing. This behavior is considered to be an alternate manifestation of the local/global concept. Numerical calculations based on a two-group, one-dimensional model are used to illustrate these observations. It is also shown using the model that the oscillations in the phase in the intermediate frequency range disappear for frequencies that correspond to wavelengths that are intergral multiples of the core height.