ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
“Summer time” again? Santee Cooper thinks so
South Carolina public utility Santee Cooper and its partner South Carolina Electric & Gas (SCE&G) called a halt to the Summer-2 and -3 AP1000 construction project in July 2017, citing costly delays and the bankruptcy of Westinghouse. The well-chronicled legal fallout included indictments and settlements, and ultimately left Santee Cooper with the ownership of nonnuclear assets at the construction site in Jenkinsville, S.C.
A. K. Agrawal, R. S. Peckover
Nuclear Science and Engineering | Volume 80 | Number 1 | January 1982 | Pages 32-46
Technical Paper | doi.org/10.13182/NSE82-A21402
Articles are hosted by Taylor and Francis Online.
A method to solve the incompressible Navier-Stokes equations for irregular three-dimensional geometries is developed. The method consists of two stages. The first stage involves a coordinate transformation that regularizes the awkwardly shaped surfaces into planar ones by suitably stretching or “ironing out” uneven surfaces. This change of coordinates converts the physical space into a transformed space, which forms, in general, a nonorthogonal curvilinear system. The resulting Navier-Stokes equations now involve a few additional nonlinear terms but the boundary conditions can now be applied very simply and accurately. The boundary layers near the surface are resolved through the second stage involving another coordinate transformation such that only the boundary layers are broadened without substantially affecting the interior region. This transformation from the transformed space of the first stage to the computational space is orthogonal and results in a concentration of grids near the boundaries only. All of the basic mathematical formulations are given in this paper.