ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
M. Segev, A. Galperin, E. Schwageraus
Nuclear Science and Engineering | Volume 135 | Number 3 | July 2000 | Pages 280-287
Technical Paper | doi.org/10.13182/NSE00-A2140
Articles are hosted by Taylor and Francis Online.
Shortly after the loading of a pressurized water reactor (PWR) core, the axial power distribution in fresh fuel has already attained the characteristic, almost flat shape, typical of burned fuel. At beginning of cycle (BOC), however, the axial distribution is centrally peaked. In assemblies hosting uniform burnable boron rods, this BOC peaking is even more pronounced. A reduction in the axial peaking is today often achieved by shortening the burnable boron rods by some 30 cm at each edge.It is shown that a two-zone grading of the boron rod leads, in a representative PWR cycle, to a reduction of the hot-spot temperature of ~70°C, compared with the nongraded case. However, with a proper three-zone grading of the boron rod, an additional 20°C may be cut off the hot-spot temperature. Further, with a slightly skewed application of this three-zone grading, an additional 50°C may be cut off.The representative PWR cycle studied was cycle 11 of the Indian Point 2 station, with a simplification in the number of fuel types and in the burnup distribution. The analysis was based on a complete three-dimensional burnup calculation. The code system was ELCOS, with BOXER as an assembly code for the generation of burnup-dependent cross sections and SILWER as a three-dimensional core code with thermal-hydraulic feedback.