ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Eckhard Krepper, Andreas Schaffrath, Attila Aszódi
Nuclear Science and Engineering | Volume 135 | Number 3 | July 2000 | Pages 267-279
Technical Paper | doi.org/10.13182/NSE00-A2139
Articles are hosted by Taylor and Francis Online.
The SWR-1000 is a new innovative boiling water reactor (BWR) concept, which was developed by Siemens AG. This concept is characterized in particular by passive safety systems (e.g., four emergency condensers, four building condensers, eight passive pressure pulse transmitters, and six gravity-driven core-flooding lines). In the framework of the BWR Physics and Thermohydraulic Complementary Action to the European Union BWR Research and Development Cluster, emergency condenser tests were performed by Forschungszentrum Jülich at the NOKO test facility. Posttest calculations with ATHLET are presented, which aim at the determination of the removable power of the emergency condenser and its operation mode. The one-dimensional thermal-hydraulic code ATHLET was extended by the module KONWAR for the calculation of the heat transfer coefficient during condensation in horizontal tubes. In addition, results of conventional finite difference calculations using the code CFX-4 are presented, which investigate the natural convection during the heatup process at the secondary side of the NOKO test facility.