ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
M.Subasi, E. Gültekin, I. A. Reyhancan, Y. Özbir, G. Tarcan, M. Sirin, M. N. Erduran
Nuclear Science and Engineering | Volume 135 | Number 3 | July 2000 | Pages 260-266
Technical Paper | doi.org/10.13182/NSE00-A2138
Articles are hosted by Taylor and Francis Online.
The (n,p) reaction cross sections of 16O in the neutron energy range from 13.6 to 14.9 MeV were measured by the activation method. The gamma-ray counting technique was applied, and the cross sections were determined relative to the 27Al(n,p)27Mg reaction cross sections. The neutrons were produced via the 3H(d,n)4He reaction on a SAMES T-400 neutron generator, and the induced gamma activities were measured by a high-purity germanium (HPGe) detector. The efficiency calibration of the HPGe detector for gamma-ray energies above 6 MeV was determined by means of gamma rays emitted from the decay of 11Be. An automated fast sample transport system was combined with the neutron generator in order to carry out the measurements in cyclic mode. The experimental method is described and the sources of systematic errors are discussed. The results obtained are compared with the experimental data in the available literature and recent evaluations.