ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
G. Winkler, V. Spiegel, C. M. Eisenhauer, D. L. Smith
Nuclear Science and Engineering | Volume 78 | Number 4 | August 1981 | Pages 415-419
Technical Note | doi.org/10.13182/NSE81-A21377
Articles are hosted by Taylor and Francis Online.
The average cross section for the reaction 63Cu(n, α)60Co has been measured absolutely in the 252Cf spontaneous fission neutron field by activation in compensated flux geometry with an accuracy of ∼2.4% (1α). A near-point source of 252Cf and a light mass source-detector assembly in a low-scattering environment was used. The resulting cross-section value was compared with calculated values obtained by convoluting the spectral distribution of 252Cf neutrons with existing energy-differential data for the reaction 63Cu(n, α)60Co. There is very good agreement (within 5%) between the experimental and the calculated average cross section if the results from a recent measurement of the 63Cu(n, α)60Co excitation function are used. Thus the reaction 63Cu(n, α)60Co, which is an important threshold reaction in reactor dosimetry, fulfills the conditions for a Category I neutron-dosimetry reaction for fission reactor applications.