ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Nelson Jarmie
Nuclear Science and Engineering | Volume 78 | Number 4 | August 1981 | Pages 404-412
Technical Note | doi.org/10.13182/NSE81-A21375
Articles are hosted by Taylor and Francis Online.
We investigated the accuracy of the basic fusion data for the T(d, n)4He, 3He(d, p)4He, T(t, 2n)4He, D(d, n)3He, and D(d, p)T reactions in the 10- to 100-keV bombarding energy region, and assessed the effects of inaccuracies on the design of fusion reactors. The data base for these reactions /particularly the most critical T(d, n)4He reaction/ rests on 25-yr-old experiments whose accuracy (often assumed to be ±5%) has rarely been questioned: Yet, in all except the D + D reactions, there are significant differences among data sets. The errors in the basic data sets may be considerably larger than previously expected, and the effect on design calculations should be significant. Much of the trouble apparently lies in the accuracy of the energy measurements, which are difficult at low energies. Systematic errors of up to 50% are possible in the reactivity values of the present T(d, n)4He data base. The errors in the reactivity will propagate proportionally into the errors in fusion probabilities in reactor calculations. The 3He(d, p)4He reaction cross sections could be in error by as much as 50% in the low-energy region. The D(d, n)3He and D(d, p)T cross sections appear to be well known and consistent. The T(t, 2n)4He cross section is poorly known and may be subject to large systematic errors. Improved absolute measurements for all the reactions in the low bombarding energy region (10 to 100 keV) are needed, but until they are done, the data sets should be left as they are [except for T(t, 2n)4He data, which could be lowered by ∼50%]. The apparent uncertainties of these data sets should be kept in mind.