ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Henry Makowitz, James R. Powell, Richard Wiswall
Nuclear Science and Engineering | Volume 78 | Number 4 | August 1981 | Pages 395-404
Technical Note | doi.org/10.13182/NSE81-A21374
Articles are hosted by Taylor and Francis Online.
A new concept for the transmutation of fission products and transuranics is studied. This concept, termed HYPERFUSE, allows one inertial reactor to transmute objectionable fission products (137Cs and 90Sr) from a large number (e.g., ∼30) of light water fission reactors, while at the same time generating electric power from the HYPERFUSE plant at a reasonable net plant efficiency (e.g., ∼30%). The cost of transmutation should be relatively low compared to other fission waste transmutation concepts due to the high support rate (number of fission reactors per HYPERFUSE reactor) and the effective generation of power by the HYPERFUSE reactor. Although the HYPERFUSE concept offers the possibility of a very effective means for waste transmutation and significant reductions in both high-integrity waste storage (burial) time and long-term risk potential, hazards will be introduced by such a system due to chemical processing and handling of radioactive materials in the recovery, partitioning, and fabrication stages as well as process and accidental losses. Such process risks need to be quantified for both conventional and advanced, chemical, and isotopic separation methods in order to evaluate the overall advantages and disadvantages of such a system. A system such as HYPERFUSE, however, leads to a quantifiable set of near-term risks for the nuclear waste problem, and a possibility of the elimination of a need for long-term nuclear waste disposal over a time scale of 106 years.