ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Henry Makowitz, James R. Powell, Richard Wiswall
Nuclear Science and Engineering | Volume 78 | Number 4 | August 1981 | Pages 395-404
Technical Note | doi.org/10.13182/NSE81-A21374
Articles are hosted by Taylor and Francis Online.
A new concept for the transmutation of fission products and transuranics is studied. This concept, termed HYPERFUSE, allows one inertial reactor to transmute objectionable fission products (137Cs and 90Sr) from a large number (e.g., ∼30) of light water fission reactors, while at the same time generating electric power from the HYPERFUSE plant at a reasonable net plant efficiency (e.g., ∼30%). The cost of transmutation should be relatively low compared to other fission waste transmutation concepts due to the high support rate (number of fission reactors per HYPERFUSE reactor) and the effective generation of power by the HYPERFUSE reactor. Although the HYPERFUSE concept offers the possibility of a very effective means for waste transmutation and significant reductions in both high-integrity waste storage (burial) time and long-term risk potential, hazards will be introduced by such a system due to chemical processing and handling of radioactive materials in the recovery, partitioning, and fabrication stages as well as process and accidental losses. Such process risks need to be quantified for both conventional and advanced, chemical, and isotopic separation methods in order to evaluate the overall advantages and disadvantages of such a system. A system such as HYPERFUSE, however, leads to a quantifiable set of near-term risks for the nuclear waste problem, and a possibility of the elimination of a need for long-term nuclear waste disposal over a time scale of 106 years.