Time-of-flight measurements of the neutron total cross section of 231Pa were carried out, in the energy range 0.01 to 10 000 eV, on two sample thicknesses using the Oak Ridge Electron Linear Accelerator as the pulsed neutron source. The 231Pa sample material was in the form of Pa2O5 from which two samples were made for the transmission measurements with thicknesses of 3.35 × 10-4 and 7.91 × 10-4 atom/b, respectively. Measurements were made for both thicknesses using an 18-m flight path and a neutron energy resolution of ∼0.3%. Transmission data were also obtained on the thick sample using the 80-m flight path with an energy resolution of ∼0.08%. The 231Pa samples were cooled with liquid nitrogen to reduce the Doppler broadening of the resonances. The transmission data have been analyzed to obtain the resonance parameters for all observed resonances up to 120 eV. The multilevel R matrix code MULTI, which includes instrumental resolution and the Doppler broadening, has been used to fit the data. Resonance energies and neutron widths were determined for a total of 137 resonances. The radiation widths of 17 resonances below 12 eV were obtained based on a determination of the effective temperature of the sample from the analyses of resonances at higher energies where Doppler broadening is dominant. The average radiation width was determined to be 40 ± 2 meV. The average observed level spacing was computed to be 0.47 ± 0.05 eV for the resonances up to 23 eV. The s-wave strength function up to 70 eV is (0.90 ± 0.10) × 10-4. Good agreement was obtained with earlier fast chopper data of 231Pa resonance parameters in the 0.01- to 70-eV energy region. The neutron widths of the 231Pa resonances are needed to determine the fission widths of the resonances from fission cross-section data and to reevaluate the neutron-induced reactions on this isotope.