ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
R. H. Iyer, H. Naik, A. K. Pandey, P. C. Kalsi, R. J. Singh, A. Ramaswami, A. G. C. Nair
Nuclear Science and Engineering | Volume 135 | Number 3 | July 2000 | Pages 227-245
Technical Paper | doi.org/10.13182/NSE00-A2136
Articles are hosted by Taylor and Francis Online.
The absolute fission yields of 46 fission products in 238U (99.9997 at.%), 46 fission products in 237Np, 27 fission products in 238Pu (99.21 at.%), 30 fission products in 240Pu (99.48 at.%), 30 fission products in 243Am (99.998 at.%), and 32 fission products in 244Cm (99.43 at.%) induced by fast neutrons were determined using a fission track-etch-cum-gamma spectrometric technique. In the case of highly alpha-active and sparingly available actinides - e.g., 238Pu, 240Pu, 243Am, and 244Cm - a novel recoil catcher technique to collect the fission products on a Lexan polycarbonate foil followed by gamma-ray spectrometry was developed during the course of this work. This completely removed interferences from (a) gamma rays of daughter products in secular equilibrium with the target nuclide (e.g., 243Am-239Np), (b) activation products of the catcher foil [e.g., 24Na from Al(n,)], and (c) activation products of the target [e.g., 238Np from 237Np(n,) and 239Np from 238U(n,)] reactions, making the gamma spectrometric analysis very simple and accurate. The high-yield asymmetric fission products were analyzed by direct gamma spectrometry, whereas the low-yield symmetric products (e.g., Ag, Cd, and Sb) as well as some of the asymmetric fission products (e.g., Br) and rare earths (in the case of 238U and 237Np) were radiochemically separated and then analyzed by gamma-ray spectrometry. The neutron spectra in the irradiation positions of the reactors were measured and delineated in the thermal to 10-MeV region using threshold activation detectors. The present data were compared with the ENDF/VI and UKFY2 evaluated data files. From the measured cumulative yields, the mass-chain yields have been deduced using charge distribution systematics. The mass yields, along with similar data for other fast neutron-induced fissioning systems, show several important features:1. Fine structure in the interval of five mass units in even-Z fissioning systems due to odd-even effects. The fine structure decreases from lighter to heavier even-Z actinides, in accordance with their odd-even effect.2. Higher yields in the mass regions 133 to 135, 138 to 140, and 143 to 145 and their complementary mass regions, depending on the mass of the fissioning systems due to the presence of 82n-66n, 86n-62n, and 88n-56n shells.3. For odd-Z fissioning systems having no odd-even effect, the fine structure is very feeble and is due only to shell effects.4. Unusually high yields observed in the mass region 133 to 139 in the fissioning system 239U* as compared to other U isotopes are explained on the basis of a higher neutron-to-proton ratio (N/Z) of 238U compared to lower-mass uranium isotopes. The [overbar], full-width at tenth-maximum, and [overbar]AL increase with increasing mass of the fissioning systems, whereas [overbar]AH of ~139 ± 1 remains constant throughout due to the strong preference for the formation of the deformed 88n shell, which is also favorable from the N/Z point of view.