ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Y. Y. Chang, S. K. Loyalka
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 235-250
Technical Note | doi.org/10.13182/NSE81-A21357
Articles are hosted by Taylor and Francis Online.
A computer code TWOLASER has been developed for neutronic calculations of square lattice cells in nuclear power reactors. The computer code, which uses new methods for solutions of the integral transport equation and burnup equations, has been used to assess the accuracy and speed of the LASER code. The new code considers actual two-dimensional geometry of the cell as compared to the one-dimensional approximation used by LASER. Calculations have been performed on a sample problem for a burnup of 10.6 MWd/kg fissile. Results from these calculations show that the one-dimensional approximation used by LASER is good for the sample problem. However, the method used by LASER for the solution of burnup equations is not efficient. A modified version, MLASER, of the LASER code has also been developed in this research. This version uses the one-dimensional approximation of LASER and the new method for the solution of burnup equations, and it also provides good results as compared to the results given by the two-dimensional code. However, for the same accuracy, MLASER is computationally much faster (a factor of 4) than the original LASER program. The code TWOLASER can be used to provide data for benchmarking, and MLASER can be used for the replacement of the original LASER.