ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Y. Y. Chang, S. K. Loyalka
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 235-250
Technical Note | doi.org/10.13182/NSE81-A21357
Articles are hosted by Taylor and Francis Online.
A computer code TWOLASER has been developed for neutronic calculations of square lattice cells in nuclear power reactors. The computer code, which uses new methods for solutions of the integral transport equation and burnup equations, has been used to assess the accuracy and speed of the LASER code. The new code considers actual two-dimensional geometry of the cell as compared to the one-dimensional approximation used by LASER. Calculations have been performed on a sample problem for a burnup of 10.6 MWd/kg fissile. Results from these calculations show that the one-dimensional approximation used by LASER is good for the sample problem. However, the method used by LASER for the solution of burnup equations is not efficient. A modified version, MLASER, of the LASER code has also been developed in this research. This version uses the one-dimensional approximation of LASER and the new method for the solution of burnup equations, and it also provides good results as compared to the results given by the two-dimensional code. However, for the same accuracy, MLASER is computationally much faster (a factor of 4) than the original LASER program. The code TWOLASER can be used to provide data for benchmarking, and MLASER can be used for the replacement of the original LASER.