ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
Y. Y. Chang, S. K. Loyalka
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 235-250
Technical Note | doi.org/10.13182/NSE81-A21357
Articles are hosted by Taylor and Francis Online.
A computer code TWOLASER has been developed for neutronic calculations of square lattice cells in nuclear power reactors. The computer code, which uses new methods for solutions of the integral transport equation and burnup equations, has been used to assess the accuracy and speed of the LASER code. The new code considers actual two-dimensional geometry of the cell as compared to the one-dimensional approximation used by LASER. Calculations have been performed on a sample problem for a burnup of 10.6 MWd/kg fissile. Results from these calculations show that the one-dimensional approximation used by LASER is good for the sample problem. However, the method used by LASER for the solution of burnup equations is not efficient. A modified version, MLASER, of the LASER code has also been developed in this research. This version uses the one-dimensional approximation of LASER and the new method for the solution of burnup equations, and it also provides good results as compared to the results given by the two-dimensional code. However, for the same accuracy, MLASER is computationally much faster (a factor of 4) than the original LASER program. The code TWOLASER can be used to provide data for benchmarking, and MLASER can be used for the replacement of the original LASER.