ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Riccardo A. Bonalumi
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 219-229
Technical Note | doi.org/10.13182/NSE81-A21355
Articles are hosted by Taylor and Francis Online.
An explicit, analytical calculation of homogenized cell parameters has been developed for centrally symmetric cells or supercells. For every principal direction, a set of one-directional (noneigenvalue) calculations driven by neutrons injected from outside generate transmission/reflection matrices from which diffusion coefficient and cross-section matrices, generally full, are obtained analytically. The analytical calculation of the homogenized parameters is carried through for two different angular distributions of the injected neutrons (generic, P1) and for two mesh structures (ultrafine, 1 mesh/cell). Reaction-rate matching cross-section matrices are also obtained and are shown to be related to the conventional edge-flux normalized cross sections. Two test problems, covering both heavy water and light water lattices, show the superiority of the homogenized diffusion theory (HDT) parameters over the traditional ones: In the light water lattice problem, the HDT constants perform even better than analogous constants generated by other authors.