ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Riccardo A. Bonalumi
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 219-229
Technical Note | doi.org/10.13182/NSE81-A21355
Articles are hosted by Taylor and Francis Online.
An explicit, analytical calculation of homogenized cell parameters has been developed for centrally symmetric cells or supercells. For every principal direction, a set of one-directional (noneigenvalue) calculations driven by neutrons injected from outside generate transmission/reflection matrices from which diffusion coefficient and cross-section matrices, generally full, are obtained analytically. The analytical calculation of the homogenized parameters is carried through for two different angular distributions of the injected neutrons (generic, P1) and for two mesh structures (ultrafine, 1 mesh/cell). Reaction-rate matching cross-section matrices are also obtained and are shown to be related to the conventional edge-flux normalized cross sections. Two test problems, covering both heavy water and light water lattices, show the superiority of the homogenized diffusion theory (HDT) parameters over the traditional ones: In the light water lattice problem, the HDT constants perform even better than analogous constants generated by other authors.