ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
Mark W. Crump, John C. Lee
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 192-210
Technical Paper | doi.org/10.13182/NSE81-A21353
Articles are hosted by Taylor and Francis Online.
We present a new computational method developed for fluid flows, in which both compressibility and thermal expansion effects are important. Application of the method in transient thermal-hydraulic analysis of nuclear steam generators is also presented. The fluid model is based on one-dimensional, nonlinear, single-fluid conservation equations for mass, momentum, and energy. An empirical slip flow model is included to enable description of two-phase flows as well as single-phase flows. Numerical solution is based on the implicit continuous-fluid Eulerian (ICE) method, which provides stable numerical solutions for compressible fluid flows. An extension of this method (designated as the EICE method) is developed to account for thermal expansion effects. This is achieved by including implicit energy dependence in coupled equations of mass, momentum, and state, and solving the full system of fluid equations through a two-step iterative technique. The development of the EICE method is presented and discussed, along with specific calculations for once-through and U-tube steam generator transients, natural flow oscillations, and a vessel blowdown transient.