ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Mark W. Crump, John C. Lee
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 192-210
Technical Paper | doi.org/10.13182/NSE81-A21353
Articles are hosted by Taylor and Francis Online.
We present a new computational method developed for fluid flows, in which both compressibility and thermal expansion effects are important. Application of the method in transient thermal-hydraulic analysis of nuclear steam generators is also presented. The fluid model is based on one-dimensional, nonlinear, single-fluid conservation equations for mass, momentum, and energy. An empirical slip flow model is included to enable description of two-phase flows as well as single-phase flows. Numerical solution is based on the implicit continuous-fluid Eulerian (ICE) method, which provides stable numerical solutions for compressible fluid flows. An extension of this method (designated as the EICE method) is developed to account for thermal expansion effects. This is achieved by including implicit energy dependence in coupled equations of mass, momentum, and state, and solving the full system of fluid equations through a two-step iterative technique. The development of the EICE method is presented and discussed, along with specific calculations for once-through and U-tube steam generator transients, natural flow oscillations, and a vessel blowdown transient.