ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Yu. V. Petrov, A. I. Shlyakhter
Nuclear Science and Engineering | Volume 77 | Number 2 | February 1981 | Pages 157-167
Technical Paper | doi.org/10.13182/NSE81-A21350
Articles are hosted by Taylor and Francis Online.
An estimate of the cross sections of nuclear reactions with thermal neutrons in terms of the average parameters of the target nucleus (the strength function, the average level spacing, and the average reaction width) is obtained. The probability distributions for the ratios of actual thermal neutron cross sections to their estimated values are introduced. These functions can be calculated from the statistical model. They are calculated for neutron radiative capture and for inelastic neutron acceleration by the isomeric nuclei [as well as the (n, α) reaction, etc.]. Using these results, one can predict the probability of finding the actual thermal neutron cross section in a given interval.