ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
Rouyentan Farhadieh
Nuclear Science and Engineering | Volume 77 | Number 1 | January 1981 | Pages 84-91
Technical Paper | doi.org/10.13182/NSE81-A21341
Articles are hosted by Taylor and Francis Online.
An experimental study of the melting of a vertical surface of a solid by a heated liquid pool of various densities was conducted. The heat transfer mode in the external fluid was by natural turbulent thermal convection. After the onset of melting, although the two media were miscible, the melt and external fluid did not intermix along their mutual vertical interface when densities of the two media were different. The melt flowed upward when the liquid pool was heavier, and downward otherwise. For these cases, the heat transfer to the solid surface was controlled by the flow of the melt layer. As the density of the liquid pool approached that of the melt, the melting rate decreased, assuming a minimum at a liquid-melt density ratio, ρ*, of about one. For ρ* < 1.1, the convective currents within the liquid pool became increasingly effective in the removal of the melt. The mixing of the two media increased, with maximum mixing occurring at ρ* ≈ 1. For this case, convection currents in the liquid pool became the controlling heat transfer mechanism.