ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Sterrett T. Perkins, Dermott E. Cullen
Nuclear Science and Engineering | Volume 77 | Number 1 | January 1981 | Pages 20-39
Technical Paper | doi.org/10.13182/NSE81-A21336
Articles are hosted by Taylor and Francis Online.
We consider all 25 projectile-target combinations of the particles p, d, t, 3He, and α. We obtained nuclear plus interference elastic cross sections for such interactions by subtracting Coulomb contributions from experimental data. We present evaluated graphs of the following resulting quantities, integrated over center-of-mass scattering cosine: reaction rate, average fractional energy loss per collision, average fractional energy loss per unit path length, and average laboratory scattering cosine. This information can be used to correct energy loss rates due to Coulomb scattering, or in more exact transport calculations that account for large-angle nuclear scattering.