ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
S. Y. Jiang, X. X. Wu, Y. J. Zhang
Nuclear Science and Engineering | Volume 135 | Number 2 | June 2000 | Pages 177-189
Technical Paper | doi.org/10.13182/NSE00-A2133
Articles are hosted by Taylor and Francis Online.
The experiment was performed on the test loop HRTL-5, which simulates the geometry and system design of the 5-MW nuclear heating reactor developed by the Institute of Nuclear Energy Technology, Tsinghua University. The flow behavior for a wide range of inlet subcoolings, in which the flow experience varies from single- to two-phase, is described in a natural circulation system at different pressures (p = 0.1, 0.24, and 1.5 MPa). Several kinds of flow instability are investigated, including geysering, flashing-related flow instability, and high-frequency flow oscillation at p = 0.1 and 0.24 MPa, as well as low steam quality density wave oscillation at p = 1.5 MPa. The mechanisms of geysering, which has new features, and flashing-related flow instability, which has never been studied well enough in this field, are particularly interpreted. The experimental results show the following: First, for a low-pressure natural circulation system, the two-phase flow is unstable in most inlet subcooling conditions, and the two-phase stable flow can be reached only with very low inlet subcoolings. Second, at high inlet subcoolings, the flow instability is dominated by subcooling boiling in the heated section, and at intermediate inlet subcoolings, it is dominated by void flashing in the adiabatic long riser. Third, in the two-phase stable flow region, the conditions for boiling out of the core, namely, single-phase flow in the heated section and two-phase flow in the riser due to vapor flashing, can be realized. The experimental results are of significance for the design and accident analysis of vessel and swimming pool-type natural circulation nuclear heating reactors.