ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
A. Paulsen, R. Widera, R. Vaninbroukx, H. Liskien
Nuclear Science and Engineering | Volume 76 | Number 3 | December 1980 | Pages 331-335
Technical Paper | doi.org/10.13182/NSE80-A21323
Articles are hosted by Taylor and Francis Online.
The excitation function for the reaction 103Rh(n,n')103mRh was measured by the activation technique from 0.2 to 6.1 MeV in 0.1-MeV steps and from 13.0 to 16.7 MeV in 1-MeV steps. This excitation function is normalized through an absolute measurement at 1.8 MeV. This measurement is based on n-p scattering for neutron flux determination and on liquid scintillation counting of 103mRh separated from 103Pd solutions for the activity determination. The total uncertainty of the cross-section results is typically ±5% above 0.5 MeV (about ±10% above 13 MeV). Concurrence with existing data is good except below 0.35 MeV, where the present results are considerably higher.