ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Goldstein, E. Greenspan
Nuclear Science and Engineering | Volume 76 | Number 3 | December 1980 | Pages 308-322
Technical Paper | doi.org/10.13182/NSE80-A21321
Articles are hosted by Taylor and Francis Online.
A recursive Monte Carlo (RMC) method for estimating the importance function distribution in three-dimensional systems, intended for importance sampling applications, is developed. The method consists of dividing the system into relatively thin geometrical regions and solving the inhomogeneous forward transport equation for each of the regions. The RMC method is found to possess a number of unique features, including the ability to infer the importance function distributions pertaining to many different detectors from essentially a single Monte Carlo run. Various technical questions concerned with the practical application of the RMC method, including the questions of the accumulation of statistical and systematic errors and their dependence on the details of the system division and source batch size, are investigated. A promising algorithm for the application of the method is formulated. The practicality and efficiency of the RMC method is investigated for a number of monoenergetic problems.