ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Hangbok Choi, Won Il Ko, Myung Seung Yang
Nuclear Science and Engineering | Volume 135 | Number 2 | June 2000 | Pages 150-164
Technical Paper | doi.org/10.13182/NSE00-A2131
Articles are hosted by Taylor and Francis Online.
A method to reduce the fuel composition heterogeneity effect on the core performance parameters has been studied for DUPIC fuel, which is made from spent pressurized water reactor (PWR) fuel by a dry refabrication process. This study focuses on the reactivity control method, which uses slightly enriched, depleted, or natural uranium to minimize the additional cost on the manufacturing of DUPIC fuel, when adjusting the excess reactivity of the spent PWR fuel. To reduce the variation of isotopic composition of the DUPIC fuel, interassembly mixing operations were assumed to be carried out three times. Three options have been considered: reactivity control by slightly enriched and depleted uranium, reactivity control by natural uranium for high-reactivity spent PWR fuels, and reactivity control by natural uranium for intermediate-reactivity spent PWR fuels. The results of this study have shown that the reactivity of DUPIC fuel can be tightly controlled with the minimum amount of fresh uranium feed. For reactivity control by slightly enriched and depleted uranium, all spent PWR fuel can be utilized as DUPIC fuel, and the fraction of fresh uranium feed is 3.4% on the average. For reactivity control by natural uranium, ~88% of spent PWR fuel can be utilized as DUPIC fuel when intermediate-reactivity spent PWR fuels are used, and the amount of natural uranium feed needed to control the DUPIC fuel reactivity is negligible.