ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
Edward L. H. Tang
Nuclear Science and Engineering | Volume 69 | Number 1 | January 1979 | Pages 65-75
Technical Paper | doi.org/10.13182/NSE79-A21286
Articles are hosted by Taylor and Francis Online.
The rod-drop experiment has been studied for the purpose of predicting reactor resonance power level. A simplified model, referred to here as the “collective model,” is introduced for experimental analysis of the rod-drop transient response. The mathematical description of this model is formulated by describing the experimentally observed oscillatory response by an overall damping factor and an overall oscillatory frequency. Based on this model, it is found that the overall damping factor is approximately a linear function of the reactor power. Accordingly, we propose an experimental procedure, the method of least-squares approach, which provides an exponential approach to the resonance power level as a function of the number of rod drops. It is shown that the accuracy of measurement in the rod-drop experiment greatly affects this technique for core dynamic analysis. The present results show that for an experiment of negligible experimental error, only two or three rod drops are needed to predict the resonance power level up to an accuracy of 0.2%, while for an experiment of ±5% in error, it requires four to five rod drops to reach an accuracy of 0.8%.