ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
Carlos Gago B.
Nuclear Science and Engineering | Volume 69 | Number 1 | January 1979 | Pages 55-64
Technical Paper | doi.org/10.13182/NSE79-A21285
Articles are hosted by Taylor and Francis Online.
It is shown that Fick's law can be used in the calculation of the rigorous neutron slowing down length for hydrogenous moderators (or in fact for any moderator), provided that the corresponding diffusion coefficient is determined within the set of equations of the consistent P1 approximation. For a given moderator, this coefficient depends solely on lethargy and source spectrum and therefore can be evaluated prior to an actual numerical calculation, which can then be carried out within the simplicity of a diffusion approximation. Furthermore, the flux calculated in this way essentially agrees with the consistent P1 result in all regions where this approximation is justified. The practical generalization to nonhydrogenous moderators is carried out by means of the Goertzel-Greuling procedure.