ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
G. F. Auchampaugh, S. Plattard, N. W. Hill
Nuclear Science and Engineering | Volume 69 | Number 1 | January 1979 | Pages 30-38
Technical Paper | doi.org/10.13182/NSE79-A21282
Articles are hosted by Taylor and Francis Online.
High-resolution and high-accuracy total cross sections of 9Be, 10,11B, and 12,13C have been measured from 1.0 to 14 MeV. The Los Alamos Scientific Laboratory Tandem Accelerator was used to produce a “white” source of neutrons by stopping a pulsed beam of 15-MeV deuterons in a thick beryllium target. The neutron energy resolution (full-width at half-maximum) achieved in kiloelectron volts is given by 1.4E(MeV)3/2, and the accuracy of the neutron energy scale in kiloelectron volts is given by ±E(MeV) [0.00744E(MeV) + 0.01592]1/2. The statistical uncertainties in the transmission vary from 0.5 to 2%, and the systematic error in the transmission is estimated to ±1.7%. The cross sections are compared with those in the ENDF/BIV library where appropriate. The high statistical accuracy of the 11B data, for example, has revealed fine structure at high excitation energy (around 9 MeV), which correlates with the structure observed in charged particle measurements on the same compound nucleus. There are also indications of additional structures that have not been seen previously in the 12B compound nucleus at this excitation energy.