ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
D. V. Gopinath, K. Santhanam
Nuclear Science and Engineering | Volume 43 | Number 2 | February 1971 | Pages 197-211
Technical Paper | doi.org/10.13182/NSE71-A21267
Articles are hosted by Taylor and Francis Online.
Here we present the results of extensive calculations on the gamma-ray transport in finite heterogeneous systems using the technique developed in Part I of this paper. Systems studied are water, concrete, aluminum, iron, and lead, and the data presented are: evolution of spectra with collisions, reflected and transmitted spectra, spectra at different depths, and buildup factors for different source energies and different thicknesses of each medium. Similar data are also presented for two-region systems of water-iron, iron-lead, and water-lead. Several interesting results have been observed, among which are: (a) a step structure and a second peak in the low energy part of the back-scattered spectra from light media, (b) progressive buildup of a peak in the low energy region of transmitted flux, and (c) significant dip in the build-up factors near the outer boundary of the systems. The results are discussed on the basis of the physical processes involved. A comparison of the present results with those published in literature is made.