ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
M. Natelson
Nuclear Science and Engineering | Volume 43 | Number 2 | February 1971 | Pages 131-144
Technical Paper | doi.org/10.13182/NSE71-A21261
Articles are hosted by Taylor and Francis Online.
The derivation of discrete ordinate and discrete ordinate-like approximations from variational principles for the one-speed transport equation is explored here. Standard discrete ordinate approximations are derived from a first-order stationary variational principle. The derivation yields a prescription for ordinates to be used given a selection of weights. Resultant quadrature schemes are compared numerically with those in common use. These new schemes derived using the weights of SN quadratures do not show significant variations in performance from the parent SN schemes. In the second portion of the paper, a new “modified” discrete ordinate approximation, MDN, is found by applying the same techniques as in the derivation of the standard approximation, this time, however, using an extremum second-order variational principle. The new approximation is compared through several numerical examples with standard discrete ordinate, simplified PN, and standard PN approximations. The MDN results do show a mitigation of the ray effects associated with standard discrete ordinate calculations (DN), but for gross region-wise absorption rates its accuracy for low orders is more like that of simplified PN rather than of PN or DN approximations. It is concluded that a low-order MDN approximation should not be a candidate to replace diffusion theory. The approximation may, however, have some application as a calculational standard.