ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
M. Natelson
Nuclear Science and Engineering | Volume 43 | Number 2 | February 1971 | Pages 131-144
Technical Paper | doi.org/10.13182/NSE71-A21261
Articles are hosted by Taylor and Francis Online.
The derivation of discrete ordinate and discrete ordinate-like approximations from variational principles for the one-speed transport equation is explored here. Standard discrete ordinate approximations are derived from a first-order stationary variational principle. The derivation yields a prescription for ordinates to be used given a selection of weights. Resultant quadrature schemes are compared numerically with those in common use. These new schemes derived using the weights of SN quadratures do not show significant variations in performance from the parent SN schemes. In the second portion of the paper, a new “modified” discrete ordinate approximation, MDN, is found by applying the same techniques as in the derivation of the standard approximation, this time, however, using an extremum second-order variational principle. The new approximation is compared through several numerical examples with standard discrete ordinate, simplified PN, and standard PN approximations. The MDN results do show a mitigation of the ray effects associated with standard discrete ordinate calculations (DN), but for gross region-wise absorption rates its accuracy for low orders is more like that of simplified PN rather than of PN or DN approximations. It is concluded that a low-order MDN approximation should not be a candidate to replace diffusion theory. The approximation may, however, have some application as a calculational standard.