ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Quality is key: Investing in advanced nuclear research for tomorrow’s grid
As the energy sector faces mounting pressure to grow at an unprecedented pace while maintaining reliability and affordability, nuclear technology remains an essential component of the long-term solution. Southern Company stands out among U.S. utilities for its proactive role in shaping these next-generation systems—not just as a future customer, but as a hands-on innovator.
R. J. Neuhold
Nuclear Science and Engineering | Volume 43 | Number 1 | January 1971 | Pages 74-86
Technical Paper | doi.org/10.13182/NSE71-A21248
Articles are hosted by Taylor and Francis Online.
The weighted residual procedure was used to expand the fast reactor space-energy synthesis approach to include multiple (discontinuous) weighting functions with continuous trial functions. In the past (except for discontinuous trial function applications) the number of weighting functions was chosen equal to the number of trial functions, and all region and current residuals were weighted with the same set of weights. In this article, each region residual and each boundary residual is separately weighted. The region residuals are weighted with region reaction rates, and the current boundary conditions are weighted with a boundary “reaction rate.” Numerical results are presented for a typical two-region (core and blanket) fast reactor in which multiple reaction rate weighting and a special use of reaction rate weighting are compared with previously used fast reactor space-energy synthesis weighting forms. The results, based on using realistic trial functions, show that multiple reaction rate weighting is generally better than Galerkin or reaction rate weighting, and approaches or exceeds the accuracy of adjoint weighting for the cases examined. Although the group balance or weighted group balance weighting is improved with an application of reaction rate weighting, preliminary results based on an extension of the two techniques to multiple reaction rate weighted group balance were not encouraging. Applications of various weighting functions using poor trial functions show the necessity of realistic trial spectra if weighting functions are to be improved. Multiple reaction rate weighting maintains the “easy to use” feature of Galerkin weighting with considerable potential for multiregion error reduction.