ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
K. B. Lee, Richard Madey
Nuclear Science and Engineering | Volume 43 | Number 1 | January 1971 | Pages 27-31
Technical Paper | doi.org/10.13182/NSE71-A21242
Articles are hosted by Taylor and Francis Online.
Experimental data of Cantelow on the time-dependent transmission of 133Xe in air flowing steadily through fixed beds packed with activated charcoal adsorbent are reinterpreted on the basis of a dispersion model in terms of a dimensionless dispersion number and an effective adsorption capacity for the gas-adsorbent system. The transmission is the ratio of the concentration at the outlet of the adsorber bed to the concentration at the inlet to the bed. The dispersion model provides an alternative interpretation to the theoretical plate model for the transport of a gas through a packed bed. For the range of dimensionless dispersion numbers represented by the data, the two models lead to the same values for the effective adsorption capacity. The reciprocal of the dimensionless dispersion number is equal to twice the theoretical plate number.