ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. A. Karam, J. E. Marshall, K. D. Dance
Nuclear Science and Engineering | Volume 43 | Number 1 | January 1971 | Pages 5-26
Technical Paper | doi.org/10.13182/NSE71-A21241
Articles are hosted by Taylor and Francis Online.
The heterogeneity and sodium void effects in ZPR-6 Assembly 5, a 2700-liter UC core, were analyzed using ENDF/B data. The cross-section sets used were generated for the homogeneous composition of this assembly, corrected for resonance spatial self-shielding in 238U via equivalence theory, and weighted with the fine structure of the fluxes in the unit-cell. Bilinear weighting with the unit-cell fine structure of the real and adjoint fluxes was also performed. The calculated critical mass was 18% greater than the measured value. The calculated keff of the as-built system was 0.988. The calculated ratio of fission in 238U to fission in 235U was, depending on the loading pattern in the unit-cell, 13 to 26% less than the measured value. The calculated ratio of capture in 238U to fission in 235U was 7 to 10% greater than the measured value. The measured reactivity difference between a small homogeneous sample and another matched plate heterogeneous sample was a factor of 4 greater than the calculated value, indicating the analytical tools used for treating the heterogeneity effects were not adequate. The reactivity difference between homogeneous and rodded samples was nil. The calculated reactivity worths of 235U samples are in a reasonable agreement with measurements. The predicted 238U reactivity worth was 15 to 20% greater than the measured value. The measured sodium-void coefficient was about 25% greater than the calculated value. The magnitude of this coefficient is quite sensitive to the particular loading pattern in the unit-cell and it is strongly dependent on the effective capture rates in 238U. The dependence of the void coefficient on loading patterns is predictable in direction but not magnitude. The void coefficient in a rodded sample was the same as that in a plate heterogeneous sample. The void coefficient in a homogeneous sample was 56% greater than that in the rodded or the plate samples.