ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
J. C. Robinson
Nuclear Science and Engineering | Volume 42 | Number 3 | December 1970 | Pages 382-396
Technical Paper | doi.org/10.13182/NSE70-A21225
Articles are hosted by Taylor and Francis Online.
The neutron flux-to-pressure frequency response for a molten-salt-fueled reactor with a small amount of gas entrained in the molten salt was determined analytically. The one-dimensional conservation equations describing the flow of the compressible molten-salt gas mixture and the one-group neutron diffusion equations were written in the linearized perturbed form, and Laplace transformation in time was performed. The coupled set of equations describing the conservation of mass for the molten salt, conservation of mass for the gas, and conservation of momentum for the salt-gas mixture (the hydraulic equations) was solved by employing matrix exponential techniques. The remaining equations were solved by more conventional schemes. The matrix exponential technique was selected to obtain a solution for the hydraulic equations over the techniques normally employed (nodal or modal) for stability studies in boiling water systems because the validity of the solution is independent of the frequency of interest, and the total number of simultaneous equations required to be solved for application of boundary conditions (closing the flow loop) is small. Results from the computed neutron flux-to-pressure frequency response for the molten-salt-fueled reactor under study show that the shape of the modulus of the frequency response for frequencies below 1 to 2 cycles/sec is independent of the void fraction (volume fraction occupied by the gas), and the magnitude of the modulus of the frequency response is proportional to the void fraction. Therefore, we conclude that the amount of void in the system can be inferred by comparing the analytical frequency response with an experimental frequency response. (This conclusion was verified and is reported in the following paper.)