ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
SC Nuclear Summit focuses on V.C. Summer
The second annual South Carolina Nuclear Summit held last week featured utility executives and legislators from the state, as well as leaders from Brookfield Asset Management, which is being considered to restart construction on the two abandoned reactors at the V.C. Summer nuclear power plant in Fairfield County. The summit, at the University of South Carolina’s Colonial Life Arena, attracted more than 350 attendees. The event was hosted by the university’s Molinaroli College of Engineering and Computing.
J. C. Robinson
Nuclear Science and Engineering | Volume 42 | Number 3 | December 1970 | Pages 382-396
Technical Paper | doi.org/10.13182/NSE70-A21225
Articles are hosted by Taylor and Francis Online.
The neutron flux-to-pressure frequency response for a molten-salt-fueled reactor with a small amount of gas entrained in the molten salt was determined analytically. The one-dimensional conservation equations describing the flow of the compressible molten-salt gas mixture and the one-group neutron diffusion equations were written in the linearized perturbed form, and Laplace transformation in time was performed. The coupled set of equations describing the conservation of mass for the molten salt, conservation of mass for the gas, and conservation of momentum for the salt-gas mixture (the hydraulic equations) was solved by employing matrix exponential techniques. The remaining equations were solved by more conventional schemes. The matrix exponential technique was selected to obtain a solution for the hydraulic equations over the techniques normally employed (nodal or modal) for stability studies in boiling water systems because the validity of the solution is independent of the frequency of interest, and the total number of simultaneous equations required to be solved for application of boundary conditions (closing the flow loop) is small. Results from the computed neutron flux-to-pressure frequency response for the molten-salt-fueled reactor under study show that the shape of the modulus of the frequency response for frequencies below 1 to 2 cycles/sec is independent of the void fraction (volume fraction occupied by the gas), and the magnitude of the modulus of the frequency response is proportional to the void fraction. Therefore, we conclude that the amount of void in the system can be inferred by comparing the analytical frequency response with an experimental frequency response. (This conclusion was verified and is reported in the following paper.)