ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
V. J. Orphan, C. G. Hoot, Joseph John
Nuclear Science and Engineering | Volume 42 | Number 3 | December 1970 | Pages 352-366
Technical Paper | doi.org/10.13182/NSE70-A21223
Articles are hosted by Taylor and Francis Online.
Gamma-ray production cross sections were measured for the 16O(n, xγ) reaction from 6.35- to 16.52-MeV neutron energy. The Gulf General Atomic LINAC was used to produce a pulsed source of neutrons having a continuous distribution of neutron energies. A 30-cm3 Ge(Li) detector, placed at 125 deg to the incident neutron beam, was used to measure the γ-ray spectra. The corresponding neutron energy was determined by the time-of-flight technique. The two-parameter data (γ-ray energy, neutron energy) were processed with an on-line computer and sorted into 10 γ-ray spectra spanning the range 6.35 MeV ≤ En ≤ 16.52 MeV. From these data we obtained average differential gamma-ray production cross sections for 9 gamma rays from the 16O(n, xγ) reaction. The cross sections are in good agreement with other recent measurements, but show rather large disagreement with some earlier measurements. The total nonelastic cross section obtained by summing the partial cross sections is consistent with the nonelastic cross section obtained from the difference between the total cross section and the total elastic cross section for En < H MeV. However, in the range 11 MeV ≤ En ≤ 16.5 MeV, there is a serious discrepancy for which a possible explanation is discussed.