ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
V. J. Orphan, C. G. Hoot, Joseph John
Nuclear Science and Engineering | Volume 42 | Number 3 | December 1970 | Pages 352-366
Technical Paper | doi.org/10.13182/NSE70-A21223
Articles are hosted by Taylor and Francis Online.
Gamma-ray production cross sections were measured for the 16O(n, xγ) reaction from 6.35- to 16.52-MeV neutron energy. The Gulf General Atomic LINAC was used to produce a pulsed source of neutrons having a continuous distribution of neutron energies. A 30-cm3 Ge(Li) detector, placed at 125 deg to the incident neutron beam, was used to measure the γ-ray spectra. The corresponding neutron energy was determined by the time-of-flight technique. The two-parameter data (γ-ray energy, neutron energy) were processed with an on-line computer and sorted into 10 γ-ray spectra spanning the range 6.35 MeV ≤ En ≤ 16.52 MeV. From these data we obtained average differential gamma-ray production cross sections for 9 gamma rays from the 16O(n, xγ) reaction. The cross sections are in good agreement with other recent measurements, but show rather large disagreement with some earlier measurements. The total nonelastic cross section obtained by summing the partial cross sections is consistent with the nonelastic cross section obtained from the difference between the total cross section and the total elastic cross section for En < H MeV. However, in the range 11 MeV ≤ En ≤ 16.5 MeV, there is a serious discrepancy for which a possible explanation is discussed.