ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
Marc Rosselet, Rakesh Chawla, Tony Williams
Nuclear Science and Engineering | Volume 135 | Number 1 | May 2000 | Pages 33-47
Technical Paper | doi.org/10.13182/NSE99-33
Articles are hosted by Taylor and Francis Online.
Two of the methods that can be used for the measurement of the subcriticality of a multiplying system are the inverse kinetic (IK) and the pulsed neutron source (PNS) techniques. These methods depend considerably on correction factors and/or kinetic parameters, which usually need to be calculated using the same neutronic codes as those being validated via the experiments. The use of epithermal detectors to reduce the dependence of area-ratio PNS measurements on calculated correction factors was reported previously. In the current work, for the first time, epithermal detectors have been used for IK measurements. As in the case of the PNS experiments, these were carried out in core/reflector configurations with large spatial effects, systematic comparisons with thermal measurements clearly bringing out the considerably lower sensitivity of the epithermal IK results to calculational corrections. A new two-group point-kinetic model has currently been developed as an extension of the usual theoretical basis (employing a single energy group) for analyzing kinetic experiments. This has been essential for justifying the analysis methodology employed for the epithermal IK measurements.