ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Fusion office bill introduced in line with DOE reorganization plan
Cornyn
Padilla
Sens. Alex Padilla (D., Calif.) and John Cornyn (R., Texas) have introduced bipartisan legislation to formally establish the Office of Fusion at the Department of Energy. This move seeks to codify one of the many changes put forward by the recent internal reorganization plan for offices at the DOE.
Companion legislation has been introduced in the House of Representatives by Reps. Don Beyer (D., Va.) and Jay Obernolte (R., Calif.), who are cochairs of the House Fusion Energy Caucus.
Details: According to Obernolte, “Congress must provide clear direction and a coordinated federal strategy to move fusion from the lab to the grid, and this legislation does exactly that.”
Hironobu Unesaki, Seiji Shiroya, Keiji Kanda, Stéphane Cathalau, Franck-Olivier Carré, Otohiko Aizawa, Toshikazu Takeda
Nuclear Science and Engineering | Volume 135 | Number 1 | May 2000 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE00-A2120
Articles are hosted by Taylor and Francis Online.
Analysis of the benchmark problems on the void coefficient of mixed-oxide (MOX)-fueled tight-pitch cells has been performed using the Japanese SRAC code system with the JENDL-3.2 library and the French APOLLO-2 code with the CEA93 library based on JEF-2.2. The benchmark problems have been specified to investigate the physical phenomena occurring during the progressive voidage of MOX-fueled tight-pitch lattices, such as high conversion light water reactor lattices, and to evaluate the impact of nuclear data and calculational methods. Despite the most recently compiled nuclear data libraries and the sophisticated calculation schemes employed in both code systems, the k and void reactivity values obtained by the two code systems show considerable discrepancy especially in the highly voided state. The discrepancy of k values shows an obvious dependence on void fraction and also has been shown to be sensitive to the isotopic composition of plutonium. The observed discrepancies are analyzed by being decomposed into contributing isotopes and reactions and have been shown to be caused by a complicated balance of both negative and positive components, which are mainly attributable to differences in a limited number of isotopes including 239Pu, 241Pu, 16O, and stainless steel.