ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
P. K. Doshi, George H. Miley
Nuclear Science and Engineering | Volume 39 | Number 2 | February 1970 | Pages 182-192
Technical Paper | doi.org/10.13182/NSE70-A21198
Articles are hosted by Taylor and Francis Online.
A subcritical assembly (29 × 38 × 29 cm) built of TRIGA-type fuel elements was pulsed by coupling it with the Illinois TRIGA reactor through a graphite thermal column (2 ft square by 4 ft long). Flux measurements were made at seven locations in four different fuel loadings—9, 16, 25, and 49 fuel elements—with keff varying from ∼0.4 to 0.92. A polynomial expansion method is used to provide a continuous representation of pulse shapes. Derivatives appearing in a diffusion-theory model, evaluated using this expansion, are then used to determine the propagation velocity and the neutronic parameters. The maximum “asymptotic” velocity (removed from the boundaries) varied from ∼4 × 104 cm/sec at keff = 0.60 to 2.54 × 104 cm/sec at keff = 0.92. The theoretical model involves an expansion which, depending on the number of terms retained, bounds the experimental data. However, differences of as much as 40% in absolute values are observed and they are attributed to inadequacies in the model for this small heterogeneous assembly. Uncertainties in the neutronic parameters, as well as nonlinearities in the instrumentation, may also contribute.