ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
R. W. Brandon, J. C. Robinson, C. W. Craven, Jr.
Nuclear Science and Engineering | Volume 39 | Number 2 | February 1970 | Pages 151-162
Technical Paper | doi.org/10.13182/NSE70-A21195
Articles are hosted by Taylor and Francis Online.
The problem of determining neutron flux spectra through detector activation is of wide and continued interest in the nuclear industry. Analysis of this problem has historically been divided into two areas of concern. The first area is the evaluation of the perturbation introduced into the flux field by the detector. The second area is the determination of the unperturbed energy-dependent neutron flux from the integral relationship of neutron flux to detector activity. An expression was derived which relates detector activity to the unperturbed neutron flux and the adjoint difference flux through the use of a variational approach and a transport theory description of the system. The equation was cast in discrete ordinates formalism to permit numerical solution. The self-contained adjoint problem was solved using standard techniques. The unperturbed flux was expanded as a series of Laguerre polynomials, the coefficients of which were determined through inversion of the resulting rectangular matrix. The theoretical model was examined through application to several synthetic problems. A water-moderated spectrum was examined with both perturbed and unperturbed calculations. Direct calculation of perturbed activities showed good agreement with standard activity calculations. Comparable calculations of flux spectra with perturbed and unperturbed activities showed close agreement. The flux spectrum calculations yielded good results in the thermal energy range, and analysis showed that difficulties encountered in the epithermal range were due to the polynomial expansion scheme, as has been previously observed.