ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
O. E. Dwyer, H. C. Berry
Nuclear Science and Engineering | Volume 39 | Number 2 | February 1970 | Pages 143-150
Technical Paper | doi.org/10.13182/NSE70-A21194
Articles are hosted by Taylor and Francis Online.
A theoretical study of fully developed heat transfer for in-line slug flow through unbaffled equilateral triangular bundles is reported. Results are given for the pitch: diameter range 1.05 to 2.00. Two sets of thermal boundary conditions have been considered: (a) uniform wall heat flux in all directions and (b) uniform wall heat flux in the axial direction and uniform wall temperature in the circumferential direction. For the first set, results on the circumferential variation of the wall temperature are given; and for the second, those on the circumferential variation of the wall heat flux are given. For both sets, average Nusselt numbers and circumferential variations of the local heat-transfer coefficients are also given. In all cases, the results are presented in the form of convenient dimensionless groups, and it is shown that they apply to, or can be used for, the estimation of the same dependent variables for turbulent flow of liquid metals through rod bundles. It has also been shown that for the P/D ratios and Peclet numbers normally employed in liquid-metal-cooled reactor cores, the ratio of the maximum temperature variation around a rod to the average wall-to-bulk temperature drop, in the case of uniform wall heat flux in all directions, is not greatly different for both slug and turbulent flows.