ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Iztok Tiselj, Gregor Cerne
Nuclear Science and Engineering | Volume 134 | Number 3 | March 2000 | Pages 306-311
Technical Note | doi.org/10.13182/NSE134-306
Articles are hosted by Taylor and Francis Online.
The behavior of the RELAP5 code at very short time steps is described, i.e., t [approximately equal to] 0.01 x/c. First, the property of the RELAP5 code to trace acoustic waves with "almost" second-order accuracy is demonstrated. Quasi-second-order accuracy is usually achieved for acoustic waves at very short time steps but can never be achieved for the propagation of nonacoustic temperature and void fraction waves. While this feature may be beneficial for the simulations of fast transients describing pressure waves, it also has an adverse effect: The lack of numerical diffusion at very short time steps can cause typical second-order numerical oscillations near steep pressure jumps. This behavior explains why an automatic halving of the time step, which is used in RELAP5 when numerical difficulties are encountered, in some cases leads to the failure of the simulation.Second, the integration of the stiff interphase exchange terms in RELAP5 is studied. For transients with flashing and/or rapid condensation as the main phenomena, results strongly depend on the time step used. Poor accuracy is achieved with "normal" time steps (t [approximately equal to] x/v) because of the very short characteristic timescale of the interphase mass and heat transfer sources. In such cases significantly different results are predicted with very short time steps because of the more accurate integration of the stiff interphase exchange terms.