ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Tomomi Uchiyama
Nuclear Science and Engineering | Volume 134 | Number 3 | March 2000 | Pages 281-292
Technical Paper | doi.org/10.13182/NSE00-A2116
Articles are hosted by Taylor and Francis Online.
The air-water two-phase flow across a staggered tube bundle at a pitch-to-diameter ratio of 1.4 is analyzed by an incompressible two-fluid model using the upstream finite element method proposed in a prior study. The Reynolds number, based on the tube diameter and the volumetric velocity of the liquid phase at the tube gap, is 41 000, and the volumetric fraction of the gas phase upstream of the bundle g0 ranges from 0 to 0.15. The calculated flows exhibit unsteady and complicated behavior irrespective of g0. The change in the drag coefficient of a tube in the bundle due to g0 agrees with the experimental result. The distribution of the volumetric fraction of the gas phase around the tube is also in good agreement with the measurement trend. These results indicate that the finite element method is usefully applicable to the two-phase-flow analysis in staggered tube bundles. It is also clarified that the unsteady flows are attributable to the occurrence and movement of vortices of both phases around the tubes.