ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Tomomi Uchiyama
Nuclear Science and Engineering | Volume 134 | Number 3 | March 2000 | Pages 281-292
Technical Paper | doi.org/10.13182/NSE00-A2116
Articles are hosted by Taylor and Francis Online.
The air-water two-phase flow across a staggered tube bundle at a pitch-to-diameter ratio of 1.4 is analyzed by an incompressible two-fluid model using the upstream finite element method proposed in a prior study. The Reynolds number, based on the tube diameter and the volumetric velocity of the liquid phase at the tube gap, is 41 000, and the volumetric fraction of the gas phase upstream of the bundle g0 ranges from 0 to 0.15. The calculated flows exhibit unsteady and complicated behavior irrespective of g0. The change in the drag coefficient of a tube in the bundle due to g0 agrees with the experimental result. The distribution of the volumetric fraction of the gas phase around the tube is also in good agreement with the measurement trend. These results indicate that the finite element method is usefully applicable to the two-phase-flow analysis in staggered tube bundles. It is also clarified that the unsteady flows are attributable to the occurrence and movement of vortices of both phases around the tubes.